
EECS 581 Group 2 Project Proposal

Team Name: STV Robotics
Team Members and email addresses:

1. Sri Gayatri Sundara Padmanabhan, sri@ku.edu
2. Paul McElroy pcm@ku.edu
3. John McCain johnm.freestate@gmail.com
4. Luke Dercher luke.dercher@gmail.com

Team Meeting time: Monday 12:15 pm
Lab Meeting time: Wednesday 4:00 pm
Contact:

● Paul McElroy: phone # (785) 215-1633
● Luke Dercher: phone # (228) 313-5570
● John McCain: phone # (785) 218-5993
● Sri Gayatri: phone # (408) 963-7928

Project Sponsor (if any): n/a

Project Description (150-250 words)
● Why is the project being undertaken? Describe an opportunity or problem that the project
is to address.
To enable people with basic programming skills to build and configure a telerobotics platform
utilizing a web-based interface with the ability to connect and control. Applications of our
platform include security cameras, medical robotics, industrial robotics, telepresence, and
more. Our platform will allow robotics hobbyists to take their projects to the next level,
businesses with limited budgets to build custom telerobotics solutions at a lower cost, loved
ones to interact over long distances, and allow employees to work remotely easier.

● What will be the end result of the project?
The end product of our project (once joined with the COE team product) will be a telerobotics
platform with minimal setup that anyone can use. Clients can connect from a remote device
such as a laptop or mobile device to a central server through a web application. The server will
then connect clients with the available registered robotic agents. Depending on the agents
available and their capabilities, different configurations will be available for the users to select
which will define the user interface for the robotic agents. Users will be able to configure basic
UI for any connected robot that implements our system. We intend to complete the project
with a few example robots & configurations.

The end result of this project
The end product on our side will consist of a web based platform that exposes a robot facing
API for communication and control, a client facing REST api for configuration and control, and
a SPA style web application that uses the client facing REST API and allows for user control of
the whole platform.

1

mailto:sri@ku.edu
mailto:pcm@ku.edu
mailto:johnm.freestate@gmail.com
mailto:luke.dercher@gmail.com

Project Milestones
First Semester Goals

● Design and initial documentation of robot-server messaging protocol (Oct 23rd)
● Proof-of-concept implementation of robot-server messaging protocol (Nov 6th)
● Design and proof-of-concept implementation of core server-side services (Dec 1st)
● Proof-of-concept level demonstration of core platform functionality from client REST

API to robot communication (Dec 7th)

Second Semester Goals

● Full implementation and documentation of client side REST API (Jan 29th)
● Front end control application implementation (March 26th)
● Demonstration of robot-user connection from front end application to robot

communication (April 9th)
● Demonstration of multiple simultaneous robot-user sessions (April 16th)
● Final documentation and release-ready product (May 1st)

Note: documentation and test coverage will progress alongside development

Gantt Chart

Project Budget
● Hardware, software, and/or computing resources (tentative)

● Lynx motion johnny 5 robotics kit: $879.99
http://www.robotshop.com/en/lynxmotion-j5c-kt-johnny-5-kit.html

● Pan tilt kit for robot head: $29.93
http://www.robotshop.com/en/lynxmotion-pan-and-tilt-kit-aluminium2.html

2

http://www.robotshop.com/en/lynxmotion-pan-and-tilt-kit-aluminium2.html

● Robot shocks: $15.99
http://www.robotshop.com/en/actobotics-aluminum-robot-shocks-pair.html

● Blackbird 1 3D FPV Camera: $89.00
http://www.robotshop.com/en/blackbird-1-3d-fpv-camera.html

● BIOSTAR A68N-5545 AMD A8-5545 (Quad core 1.7G, turbo 2.7G) Processor AMD
A70M Mini ITX Motherboard/CPU Combo: $59.99
https://www.newegg.com/Product/Product.aspx?Item=N82E16813138448&cm_re=em
bedded_solutions-_-13-138-448-_-Product

● RAM: $87.29
http://www.memory4less.com/samsung-8gb-ddr3-pc12800-m378b1g73bh0-ck0

● Power kit: $35.00 http://www.mini-box.com/picoPSU-80-60W-power-kit
● Hard drive: $74.79

https://www.amazon.com/120GB-Drive-Western-Digital-WD1200BEVS/dp/B004PJPM
B

● Wifi adaptor: $11.99
https://www.amazon.com/Panda-Ultra-150Mbps-Wireless-Adapter/dp/B00762YNMG/r
ef=sr_1_12?s=pc&ie=UTF8&qid=1508722166&sr=1-12&keywords=USB+802.11g+wifi+
adapter

● 7.2 V battery: $22.46
http://www.robotshop.com/en/bat-04-72v-2800-mah-ni-mh-rechargeable-battery.html

● 6V battery: $26.95 http://www.robotshop.com/en/6v-2800mah-nimh-battery.html
● 9.6 V battery: $27.89 http://www.robotshop.com/en/hitec-54114--battery.html
● Battery Charger: $35.00

http://www.robotshop.com/en/b6s-lipo-battery-charger-50w.html

● Estimated cost

● Total robot cost: $1361.27 + tax

● When they will be required? As soon as possible.
Work Plan

● Luke Dercher (SCRUM master) will be taking over the creation of the robot software
layer in the CoE team’s absence. A robot kit with minimal hardware assembly will be
used instead of the one intended to be provided by the ex CoE team.

● Sri will work on building the server backend and front-end, security issues, and will
pitch in and help other teammates with other aspects of the project.

● Paul will be working on the design and implementation of Video services, frontend and
backend implementation and will be assisting Luke on implementing his work on the
robot software layer.

● John will work on system architecture, back end development, and design and
development of the front end application

3

http://www.robotshop.com/en/actobotics-aluminum-robot-shocks-pair.html
http://www.robotshop.com/en/blackbird-1-3d-fpv-camera.html
https://www.newegg.com/Product/Product.aspx?Item=N82E16813138448&cm_re=embedded_solutions-_-13-138-448-_-Product
https://www.newegg.com/Product/Product.aspx?Item=N82E16813138448&cm_re=embedded_solutions-_-13-138-448-_-Product
http://www.memory4less.com/samsung-8gb-ddr3-pc12800-m378b1g73bh0-ck0
https://www.amazon.com/120GB-Drive-Western-Digital-WD1200BEVS/dp/B004PJPMB
https://www.amazon.com/120GB-Drive-Western-Digital-WD1200BEVS/dp/B004PJPMB
https://www.amazon.com/Panda-Ultra-150Mbps-Wireless-Adapter/dp/B00762YNMG/ref=sr_1_12?s=pc&ie=UTF8&qid=1508722166&sr=1-12&keywords=USB+802.11g+wifi+adapter
https://www.amazon.com/Panda-Ultra-150Mbps-Wireless-Adapter/dp/B00762YNMG/ref=sr_1_12?s=pc&ie=UTF8&qid=1508722166&sr=1-12&keywords=USB+802.11g+wifi+adapter
https://www.amazon.com/Panda-Ultra-150Mbps-Wireless-Adapter/dp/B00762YNMG/ref=sr_1_12?s=pc&ie=UTF8&qid=1508722166&sr=1-12&keywords=USB+802.11g+wifi+adapter
http://www.robotshop.com/en/bat-04-72v-2800-mah-ni-mh-rechargeable-battery.html
http://www.robotshop.com/en/6v-2800mah-nimh-battery.html
http://www.robotshop.com/en/hitec-54114--battery.html

Github link
We are storing our code in multiple repositories within a single Github organization. All
repositories will be publicly viewable and open source. We will be using Trello and Slack for
planning and communication. Here is the link to our GitHub page.
https://github.com/KUSeniorDesignWebRobot

Preliminary Project Design

The platform will exist in three primary domains: a robot layer built on top of RobotOS,
a server layer, and a front-end web application.

The server layer will handle the transmission of messages between the robot and web
client, message translation, authentication, data storage, and video processing. It will be
based on a service oriented architecture to allow for horizontal scalability and easier testing
and development. There will be three publicly exposed services, a web client interface, a robot
client interface, and the video processing service. All other services will be accessible through
internal DNS to limit potential attack surfaces for security. Internal communication will happen
through HTTP, TCP/UDP, and a RabbitMQ message broker. The message queue will handle
all messaging which does not require a prompt response, including but not limited to
messages between the web client and robot during processing and diagnostic messaging.
RabbitMQ is a scalable implementation of AMQP (Advanced Message Queuing Protocol) with
clients available for most commonly used languages. Using a pub/sub message queue for
internal communication rather than pushing messages with HTTP or TCP allows for tolerance
of moments of high load and the potential for automatic scaling during peak usage.

Other technologies we will use on the server include PostgreSQL, Redis, and NodeJS.
PostgreSQL is a feature rich relational database. PostgreSQL offers indexed semi-structured
data document storage functionality, which we will use in lieu of a dedicated document storage
engine like MongoDB for caching, schema-less document storage, and storage of immutable
data which lends itself to a key-value retrieval method. All other long term data storage will be
stored in a relational structure. We will also use Redis, a primarily in-memory key-data
structure store for transient or volatile document storage which requires high speed access.

Our services will be written primarily in NodeJS. NodeJS is particularly performant in IO
bottlenecked tasks, which we anticipate will be the primary performance restriction. Node is
also easy to rapidly prototype with and has impressive speed for an interpreted / just in time
compiled language. Its single threaded nature is not limiting due to our plans for a horizontally
scalable system, as we will be able to spin up more worker nodes for most services as needed.

We will use Websockets for communication with the Webclient and ZeroMQ for
communication with the Robot. Websockets are a secure standard for full duplex
communication between a web browser and a server with good levels of modern browser
support. ZeroMQ is a brokerless, secure message protocol which works over TCP and UDP.
ZeroMQ can handle large message sizes (including video) at high speed and has clients
available for many common languages.

4

https://github.com/KUSeniorDesignWebRobot

Our service oriented architecture design will likely require additional services that we
will not realize the necessity of until later in the development process, but a few of the services
we plan on implementing are:

● REST API for web client (includes much of the traditional web app type functionality)
● Translation service (for translating user input into the required format specified by the

robot’s manifest)
● Monitoring service (tracks latency metrics and session statistics)
● Session moderator service for setting enforced latency and managing the creation and

termination of sessions
● Robot facing endpoint
● Web client facing websockets endpoint for message passing

 1

One of the tasks we are including in our demonstrative portion of our framework will

include the use of an open source object detection algorithm called YOLO. YOLO stands for
the “You Only Look Once” object detection network. It is a deep convolutional neural network
where the object proposals are integrated inside of the neural network as a “learned” behavior
instead of being separated out as an external algorithm. This allows the network to be both
accurate and fast enough to run on individual frames at a reasonable FPS. This portion will
enable us to integrate useful object detection features into our project allowing both the user
and the robot to make automatic use of visual information. This will be used to scan the robots

1 High level software architecture diagram

5

environment for pre-selected objects, such as a coffee mug or a small teddy bear, and allow us
to tell the “user” when they are looking at such an object and to inform the program when a
task with the object has been completed. We will be using a Python implementation of the
network implemented in Google’s TensorFlow. This is because the original network was
implemented in C and is very cumbersome, whereas the Python-TensorFlow version is easy to
integrate, manipulate and change for our purposes. The network is convolutional, which
means it requires the power of a GPU or several GPUs in order to run on, since convolutional
neural networks make use of the extremely fast parallel operations made possible in those
processors.

The video bandwidth expected is around 8 to 15 fps. For higher FPS we can enjoy
more control over how the “users” interact and get feedback from the robots. For lower FPS,
however, we will have to include limiters in the functionality of the robots from the “user’s”
perspective in order to maintain a clean control of the program and hardware. We don’t yet
know what kind of latency to expect regarding video and this is a major point of research we
will have to undertake to get a workable model for our devices.

We have devised our own message format for communication with the robot. The
messages will be passed in JSON. Each message has a timestamp for when it was issued and
a variety of metadata, including unique identifiers for all relevant constructs. The primary
message types are report and command messages which give sensor information and
instruction information respectively. These messages include a list of sensor/actuator unique
identifiers, a time-to-live, and a value. Multiple instructions or sensor measurements can be
sent in a single message given that they are issued with the same timestamp. Communication
will be session based, use Message Authentication Codes for protection against
man-in-the-middle attacks, use public-private key encryption, and based on a request-reply
pattern within ZeroMQ for security purposes. Messages to the robot will have an enforced
latency in order to keep the latency of commands consistent. We believe that longer but
predictable and stable latency is preferable to shorter but inconsistent latency when it comes
to robotic control. The timeline of a session is as follows:

● Powered on and web connected robot enters a standby mode, long polling the server
to indicate availability. During this phase the robot sends a manifest document to the
server. The manifest contains a complete list of all registered actuators and sensors
along with descriptions and accepted value ranges.

● The server replies to the robot and asks to initiate a session when an authorized user
starts a connection.

● The robot accepts the request to begin a session and sends necessary session
information such as public keys necessary for MAC authentication.

● The server attempts to recall a configuration that matches the manifest requirements if
one exists. If a matching configuration does not exist, the user is prompted to create
one.

● The session is initiated, and communication and control begins.

6

 2

 3

2 Robot-server session initialization process
3 UML Diagram of the robot message protocol specification

7

The front end web client application will allow for configuration and control of our
platform. It will be built with React and Redux as a Javascript framework. It will be built in the
style of a Single Page Application (SPA), and will interact with the REST API endpoint for all
actions except robot message passing. This design keeps with our overall design philosophy
of separate coordinating applications/services. We will use various web technologies such as
Babel, Passport, Gulp, SASS, and a yet-to-be determined style framework.

Ethical and Intellectual Property Issues

Ethical issues for this project are mostly concerned with the security and privacy of the
information being transmitted by end users over the internet. To protect this information, we
are using end-to-end encryption with Public-Private keys. To further improve this, user logins
are password secured and the entire server is locked down with administrative rights.

Ethical concerns regarding the use of the system can be traced to improper use of the platform
to control robotic agents to perform unethical actions. Without the security of the users and
the robotic agents, for example, unauthorized users could gain control over the robotic agents
of another party or gain access to local information stored on the server or the robot. Another
such unethical action would be to control the connected robot to perform unethical actions
such as hurt another person or another person’s property, to surveil another person without
their permission or generally to use the telerobotics system in “bad faith” of the community it is
being used in.

For intellectual property concerns, our robot and various other parts of platform will be using
open source packages and tools. We need to cite them properly in our design specification
according to what their licenses say. This is not only an ethical concern, but a legal concern as
well. If we do not give the authors of the software we use the credit they are legally mandated
to then this will be an intellectual property issue.

For our own licensing, we have chosen to go with the MIT license. “As of 2015, according to Black
Duck Software and GitHub, the MIT license was the most popular free software license, with the GNU
GPLv2 coming second.” (Wikipedia - MIT License)

Change Log

● A major change to the proposal is that we lost our computer engineering component of
our team. This was half of our members we initially had.

● The project’s budget has changed drastically since our initial plan. This is due to the
fact that we previously thought the computer engineering team would be providing us
with a robot.

● We also now know we’re going to be using the school’s servers, so the expense of
using AWS is no longer a concern. Removed server cost calculations from the budget
section.

8

